Advanced Search+
Ming CHEN, Biao SHEN, Shinichiro KADO, Bihao GUO, Dalong CHEN, Furui CAI, Bingjia XIAO. Development of Dα band symmetrical visible optical diagnostic for boundary reconstruction on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(2): 025104. DOI: 10.1088/2058-6272/ad0d4e
Citation: Ming CHEN, Biao SHEN, Shinichiro KADO, Bihao GUO, Dalong CHEN, Furui CAI, Bingjia XIAO. Development of Dα band symmetrical visible optical diagnostic for boundary reconstruction on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(2): 025104. DOI: 10.1088/2058-6272/ad0d4e

Development of Dα band symmetrical visible optical diagnostic for boundary reconstruction on EAST tokamak

More Information
  • To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a Dα band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak (EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%. The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT (Equilibrium Fitting) results. This underscores the system’s superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.

  • [1]
    Biel W, et al 2019 Fusion Eng. Des. 146 465 doi: 10.1016/j.fusengdes.2018.12.092
    [2]
    Vayakis G, et al 2011 J. Nucl. Mater. 417 780 doi: 10.1016/j.jnucmat.2011.01.081
    [3]
    Yang Z D, et al 2015 J. Fusion Energy 34 704 doi: 10.1007/s10894-015-9926-3
    [4]
    Balboa I, et al 2012 Rev. Sci. Instrum. 83 10D530 doi: 10.1063/1.4740523
    [5]
    Grelier E, Mitteau R and Moncada V 2022 Plasma Phys. Control. Fusion 64 104010 doi: 10.1088/1361-6587/ac9015
    [6]
    Liu L, et al 2019 Fusion Eng. Des. 143 41 doi: 10.1016/j.fusengdes.2019.03.095
    [7]
    Farley T 2019 Analysis of plasma filaments with fast visible imaging in the mega ampère spherical tokamak PhD Thesis The University of Liverpool, Liverpool, United Kingdom
    [8]
    Gaudio P, et al 2013 Fusion Eng. Des. 88 1293 doi: 10.1016/j.fusengdes.2013.01.039
    [9]
    Chung J, et al 2014 Fusion Eng. Des. 89 349 doi: 10.1016/j.fusengdes.2014.03.033
    [10]
    Nam Y U, Chung J and Jeon Y M 2010 Rev. Sci. Instrum. 81 093505 doi: 10.1063/1.3482056
    [11]
    Hommen G, et al 2010 Rev. Sci. Instrum. 81 113504 doi: 10.1063/1.3499219
    [12]
    Hommen G, et al 2014 Nucl. Fusion 54 073018 doi: 10.1088/0029-5515/54/7/073018
    [13]
    Stangeby P C and McCracken G M 1990 Nucl. Fusion 30 005
    [14]
    Gao W, et al 2017 Chin. Phys. B 26 045203 doi: 10.1088/1674-1056/26/4/045203
    [15]
    Wang Y H, et al 2019 Fusion Eng. Des. 142 1 doi: 10.1016/j.fusengdes.2019.04.067
    [16]
    Su Z H, Gao J M and Gao Z 2023 Plasma Sci. Technol. 25 075103 doi: 10.1088/2058-6272/acb97d
    [17]
    International Organization for Standardization 2017 Photography—Electronic still picture imaging-Resolution and spatial frequency responses: ISO 12233: 2017 (Geneva, Switzerland: ISO
    [18]
    Zhang Z 2000 IEEE Trans. Pattern Anal. Mach. Intell. 22 1330 doi: 10.1109/34.888718
  • Related Articles

    [1]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [2]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [3]YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07
    [4]HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04
    [5]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [6]HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07
    [7]BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08
    [8]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [9]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [10]CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09
  • Cited by

    Periodical cited type(6)

    1. Zheng, P.W., Feng, J.L., Lu, L.F. et al. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas. Nuclear Fusion, 2024, 64(12): 126059. DOI:10.1088/1741-4326/ad8667
    2. Hu, L., Huang, Q., Zhuo, T. et al. Achieving prolonged continuous operation of a self-designed 28 GHz/50 kW gyrotron | [自研 28 GHz/50 kW 回旋管实现长时间连续运行*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024. DOI:10.11884/HPLPB202436.240049
    3. Hu, L., Sun, D., Huang, Q. et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦级回旋管的设计与实验进展]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(8): 083004. DOI:10.11884/HPLPB202335.230114
    4. Hu, L., Sun, D., Huang, Q. et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦回旋管实现 1.0 MW 脉冲输出]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(2): 023001. DOI:10.11884/HPLPB202335.220388
    5. Sun, D., Huang, Q., Hu, L. et al. Recent Results of a 50 GHz High Power Gyrotron for ECRH at XL-50 Tokamak. 2023. DOI:10.1109/IVEC56627.2023.10156980
    6. Hu, L., Ma, G., Sun, D. et al. Recent Development of a 105/140GHz MW-level Gyrotron at IAE. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2022. DOI:10.1109/IRMMW-THz50927.2022.9895711

    Other cited types(0)

Catalog

    Article views (26) PDF downloads (9) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return