Citation: | Sunil KANCHI, Rohit SHUKLA, Archana SHARMA. Study of plasma parameters of coaxial plasma source using triple Langmuir probe and Faraday cup diagnostics[J]. Plasma Science and Technology, 2024, 26(4): 045402. DOI: 10.1088/2058-6272/ad0f09 |
Coaxial plasma guns are a type of plasma source that produces plasma which propagates radially and axially controlled by the shape of the ground electrode, which has attracted much interest in several applications. In this work, a 120° opening angle of CPG nozzle is used as a plasma gun configuration that operates at the energy of 150 J. The ionization of polyethylene insulator between the electrodes of the gun produces a cloud of hydrogen and carbon plasma. The triple Langmuir probe and Faraday cup are used to measure plasma density and plasma temperature. These methods are used to measure the on-axis and off-axis plasma divergence of the coaxial plasma gun. The peak values of ion densities measured at a distance of 25 mm on-axis from the plasma gun are (1.6±0.5) × 1019 m−3 and (2.8±0.6) × 1019 m−3 for hydrogen and carbon plasma respectively and the peak temperature is 3.02±0.5 eV. The mean propagation velocity of plasma is calculated using the transit times of plasma at different distances from the plasma gun and is found to be 4.54±0.25 cm/μs and 1.81±0.18 cm/μs for hydrogen and carbon plasma respectively. The Debye radius is obtained from the measured experimental data that satisfies the thin sheath approximation. The shot-to-shot stability of plasma parameters facilitates the use of plasma guns in laboratory experiments. These types of plasma sources can be used in many applications like plasma opening switches, plasma devices, and as plasma sources.
This work was supported by Bhabha Atomic Research Centre, Department of Atomic Energy, Government of India. Authors would like to thank Premananda Dey, A. K. Dubey, K. Sagar and K. Venkata Apparao for their kind support. One of the author, Sunil Kanchi would like to thank Department of Atomic Energy, Government of India for financial assistance under DAE Doctoral Fellowship Scheme-2018.
[1] |
Witherspoon F D et al 2009 Rev. Sci. Instrum. 80 083506 doi: 10.1063/1.3202136
|
[2] |
Korobkov S V et al 2019 Tech. Phys. Lett. 45 228 doi: 10.1134/S1063785019030088
|
[3] |
De La Fuente H and Forsen H 1971 Rev. Sci. Instrum. 42 1453 doi: 10.1063/1.1684905
|
[4] |
Mendel C W Jr et al 1980 Rev. Sci. Instrum. 51 1641 doi: 10.1063/1.1136139
|
[5] |
Ananjin P S et al 1992 IEEE Trans. Plasma Sci. 20 537 doi: 10.1109/27.163591
|
[6] |
Akiyama H et al Plasma erosion opening switch using laser-produced plasma In: 1992 9th International Conference on High-Power Particle Beams: IEEE 1992: vol 1 (IEEE) p 627
|
[7] |
Gavrilov B G, Kozhukhov S A and Sobyanin D B 1994 Techn. Phys. 39 543
|
[8] |
Kanchi S, Shukla R and Sharma A 2020 Rev. Sci. Instrum. 91 104704
|
[9] |
Kanchi S, Shukla R and Sharma A 2023 IEEE Trans. Plasma Sci. 51 1959 doi: 10.1109/TPS.2023.3285107
|
[10] |
Bhattarai S and Mishra L N 2017 Int. J. Phys. 5 73
|
[11] |
Mackel F et al 2011 Meas. Sci. Technol. 22 055705 doi: 10.1088/0957-0233/22/5/055705
|
[12] |
Mikoshiba S and Nakano Y 1968 Jpn. J. Appl. Phys. 7 311 doi: 10.1143/JJAP.7.311
|
[13] |
Eckman R et al 2001 J. Propul. Power 17 762 doi: 10.2514/2.5831
|
[14] |
Conde L 2011 An introduction to langmuir probe diagnostics of plasmas Tech. rep. Dept. Física. ETSI Aeronáut ngenieros Aeronáuticos Universidad Politécnica de Madrid, Spain
|
[15] |
Polzin K A et al Behavior of triple langmuir probes in non-equilibrium plasmas In: AIAA Propulsion and Energy 2019 Forum Indianapolis: AIAA 2019 p 3990
|
[16] |
Qayyum A et al 2015 J. Fusion Energy 34 405 doi: 10.1007/s10894-014-9815-1
|
[17] |
Lee H C et al 2021 Vacuum 187 110135 doi: 10.1016/j.vacuum.2021.110135
|
[18] |
Borthakur S et al 2018 Phys. Plasmas 25 013532
|
[19] |
Riccardi C et al 2001 Rev. Sci. Instrum. 72 461 doi: 10.1063/1.1310578
|
[20] |
Singha S et al 2021 IEEE Trans. Plasma Sci. 50 1440
|
[21] |
Kamitsuma M, Chen S L and Chang J S 1977 J. Phys. D: Appl. Phys. 10 1065 doi: 10.1088/0022-3727/10/7/012
|
[22] |
Naieni A K et al 2009 Vacuum 83 1095 doi: 10.1016/j.vacuum.2009.01.005
|
[23] |
Bai X Y et al 2017 Plasma Sci. Technol. 19 035003 doi: 10.1088/2058-6272/19/3/035003
|
[24] |
Seamans J F and Kimura W D 1993 Rev. Sci. Instrum. 64 460 doi: 10.1063/1.1144216
|
[25] |
Damideh V et al 2017 Phys. Plasmas 24 063302 doi: 10.1063/1.4985309
|
[26] |
Pearlman J S 1977 Rev. Sci. Instrum. 48 1064 doi: 10.1063/1.1135184
|
[27] |
Ebrahimibasabi E, Feghhi S and Khorsandi M 2012 Design and simulation of a new faraday cup for es-200 electrostatic accelerator In: Proceedings of RUPAC2012, Saint-Petersburg, Russia
|
[28] |
Roshani G H, Habibi M and Sohrabi M 2011 Vacuum 86 250 doi: 10.1016/j.vacuum.2011.06.015
|
[29] |
Douieb F 1995 Experimental study of a plasma opening switch of different geometry PhD thesis Universite de Paris XI, Orsay
|
[30] |
Kumar R et al Plasma source for a miniature and repetitive plasma opening switch In: 2008 IEEE International Power Modulators and High-Voltage Conference Las Vegas: IEEE 2008: p 189
|
[31] |
Nehra V, Kumar A and Dwivedi H 2008 Int. J. Eng. 2 53
|
[32] |
Diver D A 2001 A Plasma Formulary for Physics, Technology and Astrophysics (Berlin: WileyVCH
|
[1] | Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e |
[2] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[3] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[4] | HAO Meilan(郝美兰), DAI Zhongling(戴忠玲), WANG Younian(王友年). Effects of Low-Frequency Source on a Dual-Frequency Capacitive Sheath near a Concave Electrode[J]. Plasma Science and Technology, 2014, 16(4): 320-323. DOI: 10.1088/1009-0630/16/4/04 |
[5] | WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15 |
[6] | HUANG Fupei (黄福培), YANG Chicheng (杨麒正), YE Chao (叶超), GE Shuibing (葛水兵), et al.. Effect of Internal Antenna Coil Power on the Plasma Parameters in 13.56 MHz/60 MHz Dual-Frequency Sputtering[J]. Plasma Science and Technology, 2013, 15(12): 1197-1203. DOI: 10.1088/1009-0630/15/12/07 |
[7] | BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08 |
[8] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[9] | LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05 |
[10] | CHENG Li (程立), SHI Jia-ming(时家明), XU Bo (许波). Analytical Expressions of Dual-Frequency Plasma Diagnostic Theory[J]. Plasma Science and Technology, 2012, 14(1): 37-39. DOI: 10.1088/1009-0630/14/1/09 |
1. | Zheng, P.W., Feng, J.L., Lu, L.F. et al. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas. Nuclear Fusion, 2024, 64(12): 126059. DOI:10.1088/1741-4326/ad8667 | |
2. | Hu, L., Huang, Q., Zhuo, T. et al. Achieving prolonged continuous operation of a self-designed 28 GHz/50 kW gyrotron | [自研 28 GHz/50 kW 回旋管实现长时间连续运行*]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024. DOI:10.11884/HPLPB202436.240049 | |
3. | Hu, L., Sun, D., Huang, Q. et al. Design and experimental progress of a 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦级回旋管的设计与实验进展]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(8): 083004. DOI:10.11884/HPLPB202335.230114 | |
4. | Hu, L., Sun, D., Huang, Q. et al. 1.0 MW pulse power achieved in 105/140 GHz dual-frequency MW-level gyrotron | [105/140 GHz 双频兆瓦回旋管实现 1.0 MW 脉冲输出]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2023, 35(2): 023001. DOI:10.11884/HPLPB202335.220388 | |
5. | Sun, D., Huang, Q., Hu, L. et al. Recent Results of a 50 GHz High Power Gyrotron for ECRH at XL-50 Tokamak. 2023. DOI:10.1109/IVEC56627.2023.10156980 | |
6. | Hu, L., Ma, G., Sun, D. et al. Recent Development of a 105/140GHz MW-level Gyrotron at IAE. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2022. DOI:10.1109/IRMMW-THz50927.2022.9895711 |