Kinetic Theories of Geodesic Acoustic Modes: Radial Structure, Linear Excitation by Energetic Particles and Nonlinear Saturation
-
Graphical Abstract
-
Abstract
Geodesic Acoustic Modes (GAMs) are oscillating zonal mode structures unique to toroidal plasmas and are capable of regulating microscopic turbulence and associated transports. In this paper, we investigate three important aspects of GAM dynamics: (1) GAM continuous spectrum and its mode conversion to kinetic GAM (KGAM); (2) linear excitation of energetic particle induced GAM (EGAM) and its coupling to the GAM continuum, and (3) nonlinear saturation of EGAM via wave particle trapping. The analogy between the GAM-EGAM dynamics and the well known beam-plasma instability is also discussed.
-
-