Advanced Search+
Djamel Eddine GOURARI, Manitra RAZAFINIMANANA, Marc MONTHIOUX, Raul ARENAL, Flavien VALENSI, S′ebastien JOULIE, Virginie SERIN. Synthesis of (B-C-N) Nanomaterials by Arc Discharge Using Heterogeneous Anodes[J]. Plasma Science and Technology, 2016, 18(5): 465-468. DOI: 10.1088/1009-0630/18/5/03
Citation: Djamel Eddine GOURARI, Manitra RAZAFINIMANANA, Marc MONTHIOUX, Raul ARENAL, Flavien VALENSI, S′ebastien JOULIE, Virginie SERIN. Synthesis of (B-C-N) Nanomaterials by Arc Discharge Using Heterogeneous Anodes[J]. Plasma Science and Technology, 2016, 18(5): 465-468. DOI: 10.1088/1009-0630/18/5/03

Synthesis of (B-C-N) Nanomaterials by Arc Discharge Using Heterogeneous Anodes

More Information
  • Received Date: September 08, 2015
  • In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows performing in-situ substitution of carbon atoms by hetero-elements in the graphene lattice. Our work aims to establish a correlation between the plasma properties, type and chemical composition (and the substitution rate) of the obtained single-wall carbon nan-otubes. The plasma was characterized by optical emission spectroscopy and the products were analyzed by high resolution transmission electron microscopy and core level Electron Energy-Loss Spectroscopy (EELS). Results show that a high boron content leads to a plasma temperature decrease and hinders the formation of nanotubes. This effect can be compensated by increasing the arc current and/or yttrium content. The optimal conditions for the synthesis of boron-and/or nitrogen-substituted nanotubes correspond to a high axial plasma temperature associated to a strong radial gradient. EELS analysis confirmed that the boron incorporates into the graphenic lattice.
  • 1 Saito R, Fujita M, Dresselhaus G, et al. 1992, Phys.Rev. B, 46: 1804 2 Hamada N, Sawada S, Oshiyama A. 1992, Phys. Rev.Lett., 68: 1579 3 Czerw R, Terrones M, Charlier J C, et al. 2001, Nano Letters, 1: 457 4 Golberg D, Bando Y, Han W. 1999, Chem. Phys. Lett.,308: 337 5 Maciel I O, Campos-Delgado J, Cruz-Silva E, et al.2009, Nano Letters, 9: 2267 6 Denis P A, Faccio R, Mombru A W. 2009, Chem. Phys.Phys. Chem., 10: 715 7 Golberg D, Terrones M. 2012, Carbon MetaNanotubes: Synthesis, Properties, and Applications.(Monthioux M ed.), Wiley-Blackwell, p.323 8 Mansour A, Razafinimanana M, Monthioux M. 2009,J. Phys. D: Appl. Phys., 42: 1 9 Ramarozatovo V, 2011 In-situ elaboration and characterization of heterogeneous nanotubes by electric arc plasma [Ph.D]. University Paul Sabatier, Toulouse III (Elaboration in-situ et caractérisation de nanotubes hétérogènes par plasma d’arcélectrique)
  • Related Articles

    [1]Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b
    [2]Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc
    [3]Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
    [4]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [5]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [6]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [7]SUN Weizhong (孙伟中), ZHAO Chengli (赵成利), ZHANG Junyuan (张俊源), CHEN Feng (陈峰), GOU Fujun (苟富均). An MD Study of the Temperature E®ect on H Interacting with SiC (100)[J]. Plasma Science and Technology, 2012, 14(12): 1121-1124. DOI: 10.1088/1009-0630/14/12/16
    [8]CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05
    [9]HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13
    [10]WEN Xueqing (闻雪晴), XIN Yu (信裕), FENG Chunlei (冯春雷), DING Hongbin (丁洪斌). Electron Energy and the Effective Electron Temperature of Nanosecond Pulsed Argon Plasma Studied by Global Simulations Combined with Optical Emission Spectroscopic Measurements[J]. Plasma Science and Technology, 2012, 14(1): 40-47. DOI: 10.1088/1009-0630/14/1/10

Catalog

    Article views (336) PDF downloads (690) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return