Advanced Search+
Jianhua ZHANG, Yuyang PAN, Jianyu FENG, Yunan HE, Jiahui CHU, Lifang DONG. Square grid pattern with direction-selective surface discharges in dielectric barrier discharge[J]. Plasma Science and Technology, 2023, 25(2): 025406. DOI: 10.1088/2058-6272/ac9027
Citation: Jianhua ZHANG, Yuyang PAN, Jianyu FENG, Yunan HE, Jiahui CHU, Lifang DONG. Square grid pattern with direction-selective surface discharges in dielectric barrier discharge[J]. Plasma Science and Technology, 2023, 25(2): 025406. DOI: 10.1088/2058-6272/ac9027

Square grid pattern with direction-selective surface discharges in dielectric barrier discharge

More Information
  • Corresponding author:

    Yuyang PAN, E-mail: pyy1616@163.com

    Lifang DONG, E-mail: Donglf@hbu.edu.cn

  • Received Date: June 09, 2022
  • Revised Date: August 30, 2022
  • Accepted Date: September 06, 2022
  • Available Online: December 05, 2023
  • Published Date: January 05, 2023
  • A new phenomenon that a filament discharged only once instead of twice in a cycle of the applied voltage is observed in a square grid pattern in a dielectric barrier discharge (DBD) with a larger gas gap, which is named intermittent discharge. Its spatiotemporal dynamics and the formation mechanism are studied by the multiple photomultiplier tubes and an intensified charge-coupled device. Corresponding to the positions of spots in the picture with an exposure time of 40 ms, there are some bright spots (discharge spots) and black spots (non-discharged spots) in the instantaneous image with an exposure time of 10 μs (a half cycle of the applied voltage). There are at least two bright spots around one black spot and vice versa. The surface discharges (SDS) can be observed between any two adjacent spots. The intensity of the SDS between the bright spot and the black spot is 2.5 times greater than that between two adjacent bright spots, which indicates that the SDS are directional-selective. The intermittent discharge with positive (negative) current polarity changes to that with negative (positive) current polarity, after it sustains up to 14 voltage cycles at the longest. The spatial distribution of the electric field component is calculated through COMSOL software to solve the Poisson equation numerically. It is found that the inhomogeneous distribution of surface electric field is caused by the inhomogeneous distribution of wall charges, which leads to direction-selective SDS. The intermittent discharge is formed by the competition between the direction-selective SDS and volume discharges (VDS) in DBD. This is the reason why the intermittent discharge is generated.

  • This work is supported by National Natural Science Foundation of China (No. 12075075). The Natural Science Foundation of Hebei Province, China (Nos. 2020201016 and A2018201154).

  • [1]
    Gurevich E L, Astrov Y A and Purwins H G 2005 J. Phys. D: Appl. Phys. 38 468 doi: 10.1088/0022-3727/38/3/019
    [2]
    Opaits D F et al 2008 Phys. Plasmas 15 073505 doi: 10.1063/1.2955767
    [3]
    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400 doi: 10.1109/TPS.2002.804201
    [4]
    Dong L F et al 2006 Acta Phys. Sin. 55 5375 (in Chinese) doi: 10.7498/aps.55.5375
    [5]
    Stollenwerk L 2010 Plasma Phys. Control. Fusion 52 124017 doi: 10.1088/0741-3335/52/12/124017
    [6]
    Qi H C and Zhang M Y 2020 J. Bohai Univ. (Nat. Sci. Ed. ) 41 346 (in Chinese)
    [7]
    Guikema J et al 2000 Phys. Rev. Lett. 85 3817 doi: 10.1103/PhysRevLett.85.3817
    [8]
    Stollenwerk L, Amiranashvili S and Purwins H G 2006 New J. Phys. 8 217 doi: 10.1088/1367-2630/8/9/217
    [9]
    Stollenwerk L 2009 New J. Phys. 11 103034 doi: 10.1088/1367-2630/11/10/103034
    [10]
    Feng J Y et al 2017 Plasma Sci. Technol. 19 055401 doi: 10.1088/2058-6272/aa594a
    [11]
    Bernecker B, Callegari T and Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002 doi: 10.1088/0022-3727/44/26/262002
    [12]
    Callegari T, Bernecker B and Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003 doi: 10.1088/0963-0252/23/5/054003
    [13]
    Boeuf J P et al 2012 Appl. Phys. Lett. 100 244108 doi: 10.1063/1.4729767
    [14]
    Kogelschatz U 2010 J. Phys. Conf. Ser. 257 012015 doi: 10.1088/1742-6596/257/1/012015
    [15]
    Debien A, Benard N and Moreau E 2012 J. Phys. D: Appl. Phys. 45 215201 doi: 10.1088/0022-3727/45/21/215201
    [16]
    Müller S and Zahn R J 2007 Contrib. Plasma Phys. 47 520 doi: 10.1002/ctpp.200710067
    [17]
    Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400 doi: 10.1088/0022-3727/39/20/016
    [18]
    Gibalov V I and Pietsch G J 2000 J. Phys. D: Appl. Phys. 33 2618 doi: 10.1088/0022-3727/33/20/315
    [19]
    Jang J Y 2015 IEEE Trans. Plasma Sci. 33 3688 doi: 10.1109/TPS.2015.2471088
    [20]
    Wang H et al 2016 Phys. Plasmas 23 123526 doi: 10.1063/1.4973224
    [21]
    Dong L F et al 2015 High Voltage Eng. 41 479 (in Chinese)
    [22]
    Gao Y N et al 2014 Phys. Plasmas 21 103515 doi: 10.1063/1.4900762
    [23]
    Liu Y et al 2015 Phys. Plasmas 22 103501 doi: 10.1063/1.4931999
    [24]
    Mi Y L et al 2018 Phys. Plasmas 25 123502 doi: 10.1063/1.5046323
    [25]
    Zhu Y C et al 1996 J. Phys. D: Appl. Phys. 29 2892 doi: 10.1088/0022-3727/29/11/024
    [26]
    Huang J Y et al 2018 Sce. Sin. Phys. Mech Astron. 48 125202 (in Chinese) doi: 10.1360/SSPMA2018-00125
    [27]
    Liu F C et al 2016 Phys. Plasmas 23 032301 doi: 10.1063/1.4942872
    [28]
    Duan X X, He F and Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008 doi: 10.1088/0963-0252/21/1/015008
    [29]
    Ouyang J T et al 2012 Chin. Phys. Lett. 29 025201 doi: 10.1088/0256-307X/29/2/025201
    [30]
    Qiao Y J, Li B and Ouyang J T 2016 Phys. Plasmas 23 013510 doi: 10.1063/1.4940311
    [31]
    Xie J W et al 2010 AiChE J. 56 2607 doi: 10.1002/aic.12198
    [32]
    Akishev Y et al 2011 Plasma Sources Sci. Technol. 20 024005 doi: 10.1088/0963-0252/20/2/024005
    [33]
    Stollenwerk L et al 2006 Appl. Phys. Lett. 96 255001 doi: 10.1103/PhysRevLett.96.255001
    [34]
    Dai D, Hou H X and Hao Y P 2011 Appl. Phys. Lett. 98 131503 doi: 10.1063/1.3574017
    [35]
    Huang J Y et al 2018 Phys. Plasmas 25 103503 doi: 10.1063/1.5027787
    [36]
    Yu G L et al 2019 Phys. Plasmas 26 023507 doi: 10.1063/1.5082820
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [3]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [4]Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4
    [5]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [6]WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15
    [7]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [8]LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10
    [9]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [10]WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566.

Catalog

    Figures(10)

    Article views (88) PDF downloads (86) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return