Advanced Search+
Dingchen LI, Chuan LI, Jiawei LI, Wendi YANG, Menghan XIAO, Ming ZHANG, Kexun YU. Study on the interaction mechanism of double-blade corona discharge with a large discharge gap[J]. Plasma Science and Technology, 2023, 25(4): 045404. DOI: 10.1088/2058-6272/aca460
Citation: Dingchen LI, Chuan LI, Jiawei LI, Wendi YANG, Menghan XIAO, Ming ZHANG, Kexun YU. Study on the interaction mechanism of double-blade corona discharge with a large discharge gap[J]. Plasma Science and Technology, 2023, 25(4): 045404. DOI: 10.1088/2058-6272/aca460

Study on the interaction mechanism of double-blade corona discharge with a large discharge gap

More Information
  • Corresponding author:

    Chuan LI, E-mail: lichuan@hust.edu.cn

  • Received Date: October 23, 2022
  • Revised Date: November 16, 2022
  • Accepted Date: November 16, 2022
  • Available Online: December 05, 2023
  • Published Date: February 07, 2023
  • Multi-source corona discharge is a commonly used method to generate more charged particles, but the interaction mechanism between multiple discharge sources, which largely determines the overall discharge effect, has still not been studied much. In this work, a large-space hybrid model based on a hydrodynamic model and ion-transport model is adopted to study the interaction mechanism between discharge sources. Specifically, the effects of the number of electrodes, voltage level, and electrode spacing on the discharge characteristics are studied by taking a double-blade electrode as an example. The calculation results show that, when multiple discharge electrodes operate simultaneously, the superimposed electric field includes multiple components from the electrodes, making the ion distribution and current different from that under a single-blade electrode. The larger the distance between discharge electrodes, the weaker the interaction. When the electrode spacing d is larger than 4 cm, the interaction can be ignored. The results can guide the design of large discharge gap array electrodes to achieve efficient discharge.

  • This work is supported by National Natural Science Foundation of China (Nos. 52207158 and 51821005), and the Fundamental Research Funds for the Central Universities (HUST: No. 2022JYCXJJ012).

  • [1]
    Šerá B and Šerý M 2018 Plasma Sci. Technol. 20 044012 doi: 10.1088/2058-6272/aaacc6
    [2]
    Bussiahn R et al 2010 Appl. Phys. Lett. 96 143701 doi: 10.1063/1.3380811
    [3]
    Hage M et al 2022 Appl. Microbiol. Biotechnol. 106 81 doi: 10.1007/s00253-021-11715-y
    [4]
    Zhang M et al 2021 J. Phys. D: Appl. Phys. 54 255201 doi: 10.1088/1361-6463/abf0ef
    [5]
    Li D C et al 2022 Plasma Sci. Technol. 24 095502 doi: 10.1088/2058-6272/ac6be4
    [6]
    Mei D H et al 2016 Plasma Process. Polymers 13 544 doi: 10.1002/ppap.201500159
    [7]
    Li D C et al 2022 Plasma Chem. Plasma Process. 42 1249 doi: 10.1007/s11090-022-10279-7
    [8]
    Liu W Z et al 2020 Plasma Sources Sci. Technol. 29 115011 doi: 10.1088/1361-6595/abb6b4
    [9]
    Jiang M et al 2020 Plasma Sources Sci. Technol. 29 015020 doi: 10.1088/1361-6595/ab6755
    [10]
    Babaeva N Y and Kushner M J 2014 Plasma Sources Sci. Technol. 23 015007 doi: 10.1088/0963-0252/23/1/015007
    [11]
    Shi C A et al 2017 J. Food Eng. 211 39 doi: 10.1016/j.jfoodeng.2017.04.035
    [12]
    Qu J G et al 2020 Int. J. Heat Mass Transfer 163 120406 doi: 10.1016/j.ijheatmasstransfer.2020.120406
    [13]
    Qu J G et al 2021 Appl. Therm. Eng. 193 116946 doi: 10.1016/j.applthermaleng.2021.116946
    [14]
    Liang Y G et al 2020 Plasma Sci. Technol. 22 034003 doi: 10.1088/2058-6272/ab4f01
    [15]
    Bychkov V L and Maximov D S 2015 IEEE Trans. Plasma Sci. 43 4048 doi: 10.1109/TPS.2015.2497281
    [16]
    Luo B et al 2020 IEEE Trans. Dielect. Electr. Insul. 27 782 doi: 10.1109/TDEI.2019.008551
    [17]
    Chen S, van den Berg R G W and Nijdam S 2018 Plasma Sources Sci. Technol. 27 055021 doi: 10.1088/1361-6595/aabd5f
    [18]
    Chen S, Nobelen J C P Y and Nijdam S 2017 Plasma Sources Sci. Technol. 26 095005 doi: 10.1088/1361-6595/aa86b8
    [19]
    Li D C et al 2022 High Voltage 7 429 doi: 10.1049/hve2.12167
    [20]
    Li D C et al 2021 J. Phys. D: Appl. Phys. 54 355202 doi: 10.1088/1361-6463/ac08c8
    [21]
    Tran T N et al 2011 J. Phys. D: Appl. Phys. 44 015203 doi: 10.1088/0022-3727/44/1/015203
    [22]
    Chen S et al 2019 J. Phys. D: Appl. Phys. 52 365203 doi: 10.1088/1361-6463/ab2b2a
    [23]
    Georghiou G E et al 2005 J. Phys. D: Appl. Phys. 38 R303 doi: 10.1088/0022-3727/38/20/R01
    [24]
    Chuan L et al 2020 Plasma Sources Sci. Technol. 29 045011 doi: 10.1088/1361-6595/ab708b
    [25]
    Marčiulionis P 2020 J. Electrostat. 105 103446 doi: 10.1016/j.elstat.2020.103446
  • Related Articles

    [1]Yu CHEN, Jiawei LUO, Wen LEI, Yan SHEN, Shuai CAO. Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms[J]. Plasma Science and Technology, 2024, 26(11): 115504. DOI: 10.1088/2058-6272/ad709c
    [2]Jun XIONG, Shiyu LU, Xiaoming LIU, Wenjun ZHOU, Xiaoming ZHA, Xuekai PEI. Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal[J]. Plasma Science and Technology, 2024, 26(8): 085403. DOI: 10.1088/2058-6272/ad495e
    [3]Zhao ZHANG, Yaju LI, Guanghui YANG, Qiang ZENG, Xiaolong LI, Liangwen CHEN, Dongbin QIAN, Duixiong SUN, Maogen SU, Lei YANG, Shaofeng ZHANG, Xinwen MA. Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms[J]. Plasma Science and Technology, 2024, 26(5): 055506. DOI: 10.1088/2058-6272/ad1792
    [4]Wei ZHENG, Fengming XUE, Chengshuo SHEN, Yu ZHONG, Xinkun AI, Zhongyong CHEN, Yonghua DING, Ming ZHANG, Zhoujun YANG, Nengchao WANG, Zhichao ZHANG, Jiaolong DONG, Chouyao TANG, Yuan PAN. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124003. DOI: 10.1088/2058-6272/ac9e46
    [5]Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d
    [6]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [7]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [8]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9
    [9]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [10]WANG Guiqiu(王桂秋), E Peng(鄂鹏), XIA Wenwen(夏文文). Vicinage Effects for a Nitrogen Molecular Cluster in Plasmas[J]. Plasma Science and Technology, 2014, 16(7): 637-641. DOI: 10.1088/1009-0630/16/7/02
  • Cited by

    Periodical cited type(5)

    1. Cheng, X., Song, H., Jia, M. et al. Experimental study on basic characteristics of high performance plasma jet actuator. International Journal of Hydrogen Energy, 2025. DOI:10.1016/j.ijhydene.2024.11.443
    2. Akhtar, M.S., Alicherif, M., Wang, B. et al. Effect of rotating gliding discharges on the lean blow-off limit of biogas flames. Plasma Science and Technology, 2024, 26(10): 105505. DOI:10.1088/2058-6272/ad5ec2
    3. Liu, X., Zhang, J., He, Y. et al. Gliding arc discharge in combination with Cu/Cu2O electrocatalysis for ammonia production. Plasma Science and Technology, 2024, 26(7): 075501. DOI:10.1088/2058-6272/ad2d10
    4. Zheng, Q., Li, L., Xue, Z. et al. Plasma Agricultural Nitrogen Fixation Using Clean Energies: New Attempt of Promoting PV Absorption in Rural Areas. Processes, 2023, 11(7): 2030. DOI:10.3390/pr11072030
    5. Li, Z., Zhu, Y., Pan, D. et al. Characterization of a Gliding Arc Igniter from an Equilibrium Stage to a Non–Equilibrium Stage Using a Coupled 3D–0D Approach. Processes, 2023, 11(3): 873. DOI:10.3390/pr11030873

    Other cited types(0)

Catalog

    Figures(12)  /  Tables(2)

    Article views (55) PDF downloads (59) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return