Advanced Search+
Junhui YANG, Jinjia CAO, Jianhua ZHAO, Yongzhi DAI, Dong XIANG. Alfvén continuum in the presence of a magnetic island in a cylinder configuration[J]. Plasma Science and Technology, 2023, 25(3): 035102. DOI: 10.1088/2058-6272/ac9de0
Citation: Junhui YANG, Jinjia CAO, Jianhua ZHAO, Yongzhi DAI, Dong XIANG. Alfvén continuum in the presence of a magnetic island in a cylinder configuration[J]. Plasma Science and Technology, 2023, 25(3): 035102. DOI: 10.1088/2058-6272/ac9de0

Alfvén continuum in the presence of a magnetic island in a cylinder configuration

More Information
  • Corresponding author:

    Jinjia CAO, E-mail: caojinjia@usc.edu.cn

  • Received Date: June 19, 2022
  • Revised Date: October 19, 2022
  • Accepted Date: October 25, 2022
  • Available Online: December 06, 2023
  • Published Date: January 17, 2023
  • In this work, the effect of a magnetic island on Alfvén waves is studied. A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry. The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island. The results show that the magnetic island can induce an upshift in the Alfvén continuum. Moreover, the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.

  • The corresponding author, Dr Cao, appreciates the helpful discussions with Dr Axel Könies in Max-Planck-Institute for Plasma Physics in Greifswald. This work is supported by the ITER Project of Ministry of Science and Technology (No. 2022YFE03080002), National Natural Science Foundation of China (Nos. 11605088 and 12005100), the Key Scientific Research Program of Education Department of Hunan Province (Nos. 20A417 and 20A439), the National Magnetic Confinement Fusion Science Program of China (No. 2015GB110002), the Hunan Provincial Natural Science Foundation of China (No. 2017JJ3268), the International Cooperation Base Project of Hunan Province of China (No. 2018WK4009), the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang (No. 2018KJ108), and the PhD Start-Up Fund of University of South China (No. 2017XQD08).

  • [1]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
    [2]
    Wong K L 1999 Plasma Phys. Control. Fusion 41 R1 doi: 10.1088/0741-3335/41/1/001
    [3]
    Wong K L et al 1991 Phys. Rev. Lett. 66 1874 doi: 10.1103/PhysRevLett.66.1874
    [4]
    Cheng C Z, Chen L and Chance M S 1985 Ann. Phys. 161 21 doi: 10.1016/0003-4916(85)90335-5
    [5]
    Turnbull A D et al 1993 Phys. Fluids B 5 2546 doi: 10.1063/1.860742
    [6]
    Heidbrink W W et al 1993 Phys. Rev. Lett. 71 855 doi: 10.1103/PhysRevLett.71.855
    [7]
    Heidbrink W W et al 1999 Phys. Plasmas 6 1147 doi: 10.1063/1.873359
    [8]
    Xu M et al 2013 Plasma Phys. Control. Fusion 55 065002 doi: 10.1088/0741-3335/55/6/065002
    [9]
    Buratti P et al 2005 Nucl. Fusion 45 1446 doi: 10.1088/0029-5515/45/11/027
    [10]
    Annibaldi S V, Zonca F and Buratti P 2007 Plasma Phys. Control. Fusion 49 475 doi: 10.1088/0741-3335/49/4/010
    [11]
    Zimmermann O et al 2005 Coupling of Alfvén-like modes and large 2/1 tearing modes at TEXTOR Proc. of the 32nd EPS Conf. on Plasma Physics Tarragona (Tarragona) (EPS)
    [12]
    Sun B J, Ochando M A and López-Bruna D 2015 Nucl. Fusion 55 093023 doi: 10.1088/0029-5515/55/9/093023
    [13]
    Biancalani A et al 2010 Phys. Rev. Lett. 105 095002 doi: 10.1103/PhysRevLett.105.095002
    [14]
    Biancalani A et al 2011 Plasma Phys. Control. Fusion 53 025009 doi: 10.1088/0741-3335/53/2/025009
    [15]
    Biancalani A et al 2010 Phys. Plasmas 17 122106 doi: 10.1063/1.3531689
    [16]
    Cook C R and Hegna C C 2015 Phys. Plasmas 22 042517 doi: 10.1063/1.4919266
    [17]
    Cook C R et al 2016 Plasma Phys. Control. Fusion 58 054004 doi: 10.1088/0741-3335/58/5/054004
    [18]
    Breizman B N et al 2003 Phys. Plasmas 10 3649 doi: 10.1063/1.1597495
    [19]
    Breizman B N et al 2005 Phys. Plasmas 12 112506 doi: 10.1063/1.2130692
    [20]
    Yu L M et al 2013 Phys. Plasmas 20 082509 doi: 10.1063/1.4817962
    [21]
    Fu G Y and Berk H L 2006 Phys. Plasmas 13 052502 doi: 10.1063/1.2196246
    [22]
    Xie H S and Xiao Y 2015 Phys. Plasmas 22 022518 doi: 10.1063/1.4913487
    [23]
    Cheng C Z and Chance M S 1986 Phys. Fluids 29 3695 doi: 10.1063/1.865801
    [24]
    Spong D A, Azevedo E D and Todo Y 2010 Phys. Plasmas 17 022106 doi: 10.1063/1.3313818
    [25]
    Fu G Y and Van Dam J W 1989 Phys. Fluids B 1 1949 doi: 10.1063/1.859057
    [26]
    Chen W et al 2014 Europhys. Lett. 107 25001 doi: 10.1209/0295-5075/107/25001
    [27]
    Chen W et al 2017 Nucl. Fusion 57 114003 doi: 10.1088/1741-4326/aa7eee
  • Related Articles

    [1]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [4]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [5]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [6]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [7]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [8]Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11
    [9]V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02
    [10]N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212.
  • Cited by

    Periodical cited type(11)

    1. Zhang, M., Liao, M., Bu, L. et al. Optimization and analysis of surface flashover triggered vacuum switch conduction delay time characteristics. AIP Advances, 2025, 15(1): 015328. DOI:10.1063/5.0249811
    2. Abbas, I.K., Aadim, K.A. Investigation of the Impacts of Laser Energy on Calcium Plasma and Calculated Plasma Parameters by using the O. E. S. Technique. AIP Conference Proceedings, 2024, 2885(1): 060003. DOI:10.1063/5.0181645
    3. Robledo-Martinez, A., Sobral, H., Garcia-Villarreal, L.A. Dynamics of the plasma induced by laser on a cryogenically cooled aluminum target for application in space propulsion. Physics of Plasmas, 2024, 31(1): 013501. DOI:10.1063/5.0174305
    4. Wang, Y.-F., Zhu, X.-M., Jia, J.-W. et al. Development of a circumferential-scanning tomography system for the measurement of 3-D plume distribution of the spacecraft plasma thrusters. Measurement: Journal of the International Measurement Confederation, 2023. DOI:10.1016/j.measurement.2023.112966
    5. Wu, J.-J., Ou, Y., Zhang, Y. et al. Review and Prospect of Laser-Electric Hybrid Thruster | [激光-电磁复合推力器研究现状与展望]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208069. DOI:10.13675/j.cnki.tjjs.2208069
    6. Ou, Y., Wu, J., Zhang, Y. et al. A predictive model for macro-performances applied to laser-assisted pulsed plasma thrusters. Physics of Plasmas, 2022, 29(1): 013506. DOI:10.1063/5.0073678
    7. Robledo-Martinez, A., Garcia-Villarreal, A., Sobral, H. et al. Laser ablation of a metallic target under cryogenic conditions. Applied Physics A: Materials Science and Processing, 2021, 127(12): 927. DOI:10.1007/s00339-021-05061-z
    8. Zhao, Y., Tan, S., Wu, J. et al. The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant. Plasma Science and Technology, 2021, 23(10): 104007. DOI:10.1088/2058-6272/ac10ff
    9. Duan, B., Zhang, H., Hua, Z. et al. Impulse and electric charge characteristics of chemical propellant under pulsed laser irradiation. Vacuum, 2021. DOI:10.1016/j.vacuum.2021.110419
    10. Zhang, R., Xi, W., Huang, Q. Influence of Different Energy Supply Methods on Performance of Ablative Pulsed Plasma Thrusters. Frontiers in Energy Research, 2021. DOI:10.3389/fenrg.2021.752017
    11. Zhang, Z., Zhang, Z., Ling, W.Y.L. et al. Time-resolved investigation of the asymmetric plasma plume in a pulsed plasma thruster. Journal of Physics D: Applied Physics, 2020, 53(47): 475201. DOI:10.1088/1361-6463/abab2a

    Other cited types(0)

Catalog

    Figures(8)

    Article views (82) PDF downloads (270) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return