Citation: | Junhui YANG, Jinjia CAO, Jianhua ZHAO, Yongzhi DAI, Dong XIANG. Alfvén continuum in the presence of a magnetic island in a cylinder configuration[J]. Plasma Science and Technology, 2023, 25(3): 035102. DOI: 10.1088/2058-6272/ac9de0 |
In this work, the effect of a magnetic island on Alfvén waves is studied. A physical model is established wherein Alfvén waves propagate in the presence of a magnetic island in a cylindrical geometry. The structure of the Alfvén wave continuum is calculated by considering only the coupling caused by the periodicity in the helical angle of the magnetic island. The results show that the magnetic island can induce an upshift in the Alfvén continuum. Moreover, the coupling between different branches of the continuous spectrum becomes more significant with increasing continuum mode numbers near the boundary of the magnetic island.
The corresponding author, Dr Cao, appreciates the helpful discussions with Dr Axel Könies in Max-Planck-Institute for Plasma Physics in Greifswald. This work is supported by the ITER Project of Ministry of Science and Technology (No. 2022YFE03080002), National Natural Science Foundation of China (Nos. 11605088 and 12005100), the Key Scientific Research Program of Education Department of Hunan Province (Nos. 20A417 and 20A439), the National Magnetic Confinement Fusion Science Program of China (No. 2015GB110002), the Hunan Provincial Natural Science Foundation of China (No. 2017JJ3268), the International Cooperation Base Project of Hunan Province of China (No. 2018WK4009), the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang (No. 2018KJ108), and the PhD Start-Up Fund of University of South China (No. 2017XQD08).
[1] |
Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
|
[2] |
Wong K L 1999 Plasma Phys. Control. Fusion 41 R1 doi: 10.1088/0741-3335/41/1/001
|
[3] |
Wong K L et al 1991 Phys. Rev. Lett. 66 1874 doi: 10.1103/PhysRevLett.66.1874
|
[4] |
Cheng C Z, Chen L and Chance M S 1985 Ann. Phys. 161 21 doi: 10.1016/0003-4916(85)90335-5
|
[5] |
Turnbull A D et al 1993 Phys. Fluids B 5 2546 doi: 10.1063/1.860742
|
[6] |
Heidbrink W W et al 1993 Phys. Rev. Lett. 71 855 doi: 10.1103/PhysRevLett.71.855
|
[7] |
Heidbrink W W et al 1999 Phys. Plasmas 6 1147 doi: 10.1063/1.873359
|
[8] |
Xu M et al 2013 Plasma Phys. Control. Fusion 55 065002 doi: 10.1088/0741-3335/55/6/065002
|
[9] |
Buratti P et al 2005 Nucl. Fusion 45 1446 doi: 10.1088/0029-5515/45/11/027
|
[10] |
Annibaldi S V, Zonca F and Buratti P 2007 Plasma Phys. Control. Fusion 49 475 doi: 10.1088/0741-3335/49/4/010
|
[11] |
Zimmermann O et al 2005 Coupling of Alfvén-like modes and large 2/1 tearing modes at TEXTOR Proc. of the 32nd EPS Conf. on Plasma Physics Tarragona (Tarragona) (EPS)
|
[12] |
Sun B J, Ochando M A and López-Bruna D 2015 Nucl. Fusion 55 093023 doi: 10.1088/0029-5515/55/9/093023
|
[13] |
Biancalani A et al 2010 Phys. Rev. Lett. 105 095002 doi: 10.1103/PhysRevLett.105.095002
|
[14] |
Biancalani A et al 2011 Plasma Phys. Control. Fusion 53 025009 doi: 10.1088/0741-3335/53/2/025009
|
[15] |
Biancalani A et al 2010 Phys. Plasmas 17 122106 doi: 10.1063/1.3531689
|
[16] |
Cook C R and Hegna C C 2015 Phys. Plasmas 22 042517 doi: 10.1063/1.4919266
|
[17] |
Cook C R et al 2016 Plasma Phys. Control. Fusion 58 054004 doi: 10.1088/0741-3335/58/5/054004
|
[18] |
Breizman B N et al 2003 Phys. Plasmas 10 3649 doi: 10.1063/1.1597495
|
[19] |
Breizman B N et al 2005 Phys. Plasmas 12 112506 doi: 10.1063/1.2130692
|
[20] |
Yu L M et al 2013 Phys. Plasmas 20 082509 doi: 10.1063/1.4817962
|
[21] |
Fu G Y and Berk H L 2006 Phys. Plasmas 13 052502 doi: 10.1063/1.2196246
|
[22] |
Xie H S and Xiao Y 2015 Phys. Plasmas 22 022518 doi: 10.1063/1.4913487
|
[23] |
Cheng C Z and Chance M S 1986 Phys. Fluids 29 3695 doi: 10.1063/1.865801
|
[24] |
Spong D A, Azevedo E D and Todo Y 2010 Phys. Plasmas 17 022106 doi: 10.1063/1.3313818
|
[25] |
Fu G Y and Van Dam J W 1989 Phys. Fluids B 1 1949 doi: 10.1063/1.859057
|
[26] |
Chen W et al 2014 Europhys. Lett. 107 25001 doi: 10.1209/0295-5075/107/25001
|
[27] |
Chen W et al 2017 Nucl. Fusion 57 114003 doi: 10.1088/1741-4326/aa7eee
|
[1] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[2] | Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f |
[3] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[4] | ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09 |
[5] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[6] | BAI Yang (柏洋), JIN Chenggang (金成刚), YU Tao (余涛), WU Xuemei (吴雪梅), et al.. Experimental Characterization of Dual-Frequency Capacitively Coupled Plasma with Inductive Enhancement in Argon[J]. Plasma Science and Technology, 2013, 15(10): 1002-1005. DOI: 10.1088/1009-0630/15/10/08 |
[7] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[8] | CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05 |
[9] | WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05 |
[10] | D. GUENDOUZ, A. HAMID, A. HENNAD. Second Order Fluid Glow Discharge Model Sustained by Different Source Terms[J]. Plasma Science and Technology, 2011, 13(5): 583-590. |