Citation: | Liqing TONG (童立青), Kefu LIU (刘克富), Yonggang WANG (王永刚). Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs[J]. Plasma Science and Technology, 2018, 20(2): 24006-024006. DOI: 10.1088/2058-6272/aa9b28 |
[1] |
Borcia G, Anderson C A and Brown N M D 2003 Plasma Sources Sci. Technol. 12 335
|
[2] |
Redondo L M and Fernando Silva J 2009 IEEE Trans. Plasma Sci. 37 1632
|
[3] |
Mericam-Bourdet N et al 2012 Eur. Phys. J. Appl. Phys. 57 30801
|
[4] |
Wei L S et al 2016 Plasma Sci. Technol. 18 147
|
[5] |
Bhattacharyya A and Rajanikanth B S 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1879
|
[6] |
Wu H X, Fang Z and Xu Y H 2015 Plasma Sci. Technol. 17 228
|
[7] |
Li Y et al 2016 Plasma Sci. Technol. 18 173
|
[8] |
Han Q Y et al 2013 J. Phys. D: Appl. Phys. 46 505203
|
[9] |
Lomaev M I, Sosnin E A and Tarasenko V F 2012 Prog. Quantum Electron. 36 51
|
[10] |
Yao S et al 2016 Plasma Sci. Technol. 18 804
|
[11] |
Khoshkhoo R and Jahangirian A 2016 Plasma Sci. Technol. 18 933
|
[12] |
Qi X H et al 2016 Plasma Sci. Technol. 18 1005
|
[13] |
Chen G L et al 2017 Plasma Sci. Technol. 19 015503
|
[14] |
Wang L et al 2017 Plasma Sci. Technol. 19 035402
|
[15] |
WangYG,TongL QandLiuK F2017 Plasma Sci. Technol. 19 064002
|
[16] |
Mei?e M 2013 Resonant behaviour of pulse generators for the ef?cient drive of optical radiation sources based on dielectric barrier discharges PhD Thesis KIT Karlsruhe, Germany
|
[17] |
Liu S H and Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632
|
[18] |
Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400
|
[19] |
Merbahi N et al 2007 J. Appl. Phys. 101 123309
|
[20] |
Xiong Q et al 2010 Phys. Plasmas 17 043506
|
[21] |
Cheng H et al 2016 High Volt. 1 62
|
[22] |
Jiang H et al 2011 IEEE Trans. Plasma Sci. 39 2076
|
[23] |
Opaits D F et al 2008 J. Appl. Phys. 104 043304
|
[24] |
RaoJF,LiuK FandQiuJ2013 IEEE Trans. Plasma Sci. 41 564
|
[25] |
Redondo L M, Canacsinh H and Fernando Silva J 2009 IEEE Trans. Plasma Sci. 16 1037
|
[26] |
Jiang W H and Tokuchi A 2012 IEEE Trans. Plasma Sci. 10 2625
|
[27] |
Yao C et al 2012 IEEE Trans. Plasma Sci. 10 2366
|
[28] |
Wang Y G et al 2016 IEEE Trans. Plasma Sci. 10 1933
|
[1] | Hongbo FU, Huadong WANG, Mengyang ZHANG, Bian WU, Zhirong ZHANG. Effect of lens-to-sample distance on spatial uniformity and emission spectrum of flat-top laser-induced plasma[J]. Plasma Science and Technology, 2022, 24(8): 084005. DOI: 10.1088/2058-6272/ac6b8e |
[2] | Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Miao LIU (刘淼), Yitong LIU (刘奕彤), Qingxue LI (李庆雪), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Xun GAO (高勋), Mingxing JIN (金明星). Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(4): 45504-045504. DOI: 10.1088/2058-6272/abeb5d |
[3] | Wei QI (齐巍), Qiuyun WANG (王秋云), Junfeng SHAO (邵俊峰), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas[J]. Plasma Science and Technology, 2021, 23(4): 45501-045501. DOI: 10.1088/2058-6272/abe52c |
[4] | Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1 |
[5] | Minchao CUI (崔敏超), Yoshihiro DEGUCHI (出口祥啓), Zhenzhen WANG (王珍珍), Seiya TANAKA (田中诚也), Min-Gyu JEON (全敏奎), Yuki FUJITA (藤田裕贵), Shengdun ZHAO (赵升吨). Remote open-path laser-induced breakdown spectroscopy for the analysis of manganese in steel samples at high temperature[J]. Plasma Science and Technology, 2019, 21(3): 34007-034007. DOI: 10.1088/2058-6272/aaeba7 |
[6] | Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc |
[7] | Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e |
[8] | Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc |
[9] | GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13 |
[10] | W A FAROOQ, M ATIF, W TAWFIK, M S ALSALHI, Z A ALAHMED, M SARFRAZ, J P SINGH. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1141-1146. DOI: 10.1088/1009-0630/16/12/10 |
1. | Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1 |
2. | Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb |
3. | Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7 |
4. | Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718 |
5. | Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361 |
6. | Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f |
7. | Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596 |