Advanced Search+
Ilya BAKEEV, Kirill KARPOV, Aleksandr KLIMOV, Efim OKS, Aleksey ZENIN. Focused electron beam transport through a long narrow metal tube at elevated pressures in the forevacuum range[J]. Plasma Science and Technology, 2023, 25(1): 015507. DOI: 10.1088/2058-6272/ac80a7
Citation: Ilya BAKEEV, Kirill KARPOV, Aleksandr KLIMOV, Efim OKS, Aleksey ZENIN. Focused electron beam transport through a long narrow metal tube at elevated pressures in the forevacuum range[J]. Plasma Science and Technology, 2023, 25(1): 015507. DOI: 10.1088/2058-6272/ac80a7

Focused electron beam transport through a long narrow metal tube at elevated pressures in the forevacuum range

More Information
  • Corresponding author:

    Ilya BAKEEV, E-mail: bakeeviyu@mail.ru

  • Received Date: March 20, 2022
  • Revised Date: June 08, 2022
  • Accepted Date: July 11, 2022
  • Available Online: December 05, 2023
  • Published Date: October 30, 2022
  • We present here our investigations of the features of focused electron beam transport in free space at elevated pressures of a few pascals. We have explored the effect of the beam accelerating voltage, operating gas pressure, and magnetic focusing upon the trajectory of beam electrons in the crossover region, in particular on the beam convergence and divergence angles. It is shown that for the forevacuum pressure range of 2–5 Pa explored, a distinctive feature of the propagation of a focused electron beam with a current of up to 20 mA at an accelerating voltage of 10–20 kV is the difference in the angles of convergence (before the focus) and divergence (after the focus). Whereas at a low pressure of 2 Pa the divergence angle is smaller than the convergence angle, as the pressure increases the divergence angle increases and for pressures greater than 5 Pa the divergence angle is greater than the convergence angle. The results obtained were used in experiments on electron beam transport through a long narrow metal tube with a diameter of 5.8–9.2 mm and length of 10–30 cm. We show that for a 30 cm long tube of 7.5 mm diameter, the focused beam transmission can exceed 70%.

  • These studies were supported by the Russian Science Foundation (No. 21-79-10217), https://rscf.ru/project/21-79-10217/. Special thanks to Dr Ian Brown (Berkeley Lab) for English corrections and helpful discussion.

  • [1]
    Shul R J and Pearton S J 2000 Handbook of Advanced Plasma Processing Techniques (Berlin: Springer)
    [2]
    Chu P K et al 2002 Mater. Sci. Eng. : R: Rep. 36 143 doi: 10.1016/S0927-796X(02)00004-9
    [3]
    Morent R et al 2011 Plasma Process. Polym. 8 171 doi: 10.1002/ppap.201000153
    [4]
    Larisch B, Brusky U and Spies H J 1999 Surf. Coat. Technol. 116–119 205 doi: 10.1016/S0257-8972(99)00084-5
    [5]
    Zhecheva A et al 2005 Surf. Coat. Technol. 200 2192 doi: 10.1016/j.surfcoat.2004.07.115
    [6]
    Zhao C et al 2006 Surf. Coat. Technol. 201 2320 doi: 10.1016/j.surfcoat.2006.03.045
    [7]
    Nishimoto A et al 2010 Surf. Coat. Technol. 205 S365 doi: 10.1016/j.surfcoat.2010.08.034
    [8]
    Abraha P, Yoshikawa Y and Katayama Y 2008 Vacuum 83 497 doi: 10.1016/j.vacuum.2008.04.073
    [9]
    Denisov V V et al 2019 Phys. Plasmas 26 123510 doi: 10.1063/1.5126485
    [10]
    Ignatov D Y et al 2020 IEEE Trans. Plasma Sci. 48 2050 doi: 10.1109/TPS.2020.2996739
    [11]
    Liu B et al 2001 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 184 644 doi: 10.1016/S0168-583X(01)00823-0
    [12]
    Kwon S C et al 1992 J. Mater. Eng. Perform. 1 353 doi: 10.1007/BF02652389
    [13]
    Borisyuk Y V et al 2018 J. Surf. Invest. : X-ray, Synchrotron Neutron Tech. 12 603 doi: 10.1134/S1027451018030254
    [14]
    Borisyuk Y V et al 2015 Phys. Procedia 71 105 doi: 10.1016/j.phpro.2015.08.322
    [15]
    Akhmadeev Y H et al 2017 Plasma Phys. Rep. 43 67 doi: 10.1134/S1063780X17010020
    [16]
    Ivanov Y F et al 2017 High Temp. Mater. Process. : Int. Quart. High-Technol. Plasma Process. 21 13 doi: 10.1615/HighTempMatProc.2017020052
    [17]
    Burdovitsin V A and Oks E M 2008 Laser Part. Beams 26 619 doi: 10.1017/S0263034608000694
    [18]
    Klimov A et al 2019 Laser Part. Beams 37 203 doi: 10.1017/S0263034619000375
    [19]
    Bakeev I Y et al 2018 Plasma Sources Sci. Technol. 27 075002 doi: 10.1088/1361-6595/aacb55
    [20]
    Bakeev I Y et al 2022 IEEE Trans. Plasma Sci. 50 289 doi: 10.1109/TPS.2021.3139344
    [21]
    Kaur A, Ribton C and Balachandaran W 2015 J. Mater. Process. Technol. 221 225 doi: 10.1016/j.jmatprotec.2015.02.024
    [22]
    Bakeev I Y et al 2019 Rev. Sci. Instrum. 90 023302 doi: 10.1063/1.5078655
    [23]
    Hawkes P W 1982 Magnetic Electron Lenses (Berlin: Springer)
  • Related Articles

    [1]Xi WANG, Jianhong HAO, Fang ZHANG, Qiang ZHAO, Jieqing FAN, Bixi XUE, Lei GAO, Chenrui CHAI, Zhiwei DONG. Axial effect analysis of relativistic electron beam propagation in vacuum[J]. Plasma Science and Technology, 2022, 24(6): 065301. DOI: 10.1088/2058-6272/ac5c24
    [2]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [3]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [4]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [5]Jiao PENG (彭姣), Rong YAN (鄢容), Rui DING (丁锐), Junling CHEN (陈俊凌), Dahuan ZHU (朱大焕), Zengming ZHANG (张增明). Repetitive cleaning of a stainless steel first mirror using radio frequency plasma[J]. Plasma Science and Technology, 2017, 19(10): 105601. DOI: 10.1088/2058-6272/aa7629
    [6]ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02
    [7]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [8]ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06
    [9]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [10]ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03
  • Cited by

    Periodical cited type(4)

    1. Gao, L., Hao, J., Zhang, F. et al. Study on law of two-dimensional sheet relativistic electron beam transport to target | [二维片状相对论电子束到靶规律研究]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2024, 36(4): 043032. DOI:10.11884/HPLPB202436.230101
    2. Xue, B., Zhang, F., Zhao, Q. et al. Fast Spacecraft Charging Mitigation With Plasma Contactors During High-Power Electron Beam Emission in the GEO Environment. Journal of Geophysical Research: Space Physics, 2024, 129(1): e2023JA031783. DOI:10.1029/2023JA031783
    3. Xue, B., Zhao, Q., Zhang, F. et al. Fast spacecraft charging induced by a high-power electron beam emission and its mitigation through a plasma contactor. Journal of Instrumentation, 2023, 18(10): P10037. DOI:10.1088/1748-0221/18/10/P10037
    4. Wang, X., Hao, J., Zhang, F. et al. Axial effect analysis of relativistic electron beam propagation in vacuum. Plasma Science and Technology, 2022, 24(6): 065301. DOI:10.1088/2058-6272/ac5c24

    Other cited types(0)

Catalog

    Figures(7)

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return