Citation: | Ilya ZADIRIEV, Elena KRALKINA, Konstantin VAVILIN, Alexander NIKONOV, Georgy SHVIDKIY. Comparison of pulse-modulated and continuous operation modes of a radio-frequency inductive ion source[J]. Plasma Science and Technology, 2023, 25(2): 025405. DOI: 10.1088/2058-6272/ac8fca |
The paper describes an experimental study of the characteristics of a pulse-modulated radio-frequency (RF) discharge sustained at low pressures, typical of the operating modes of RF gridded ion sources. The motivation for the study is the question of whether the RF pulse-modulated mode can increase the efficiency of the ion source. The ion current values extracted from an RF inductive ion source operating in continuous and pulse-modulated modes were compared. The experimental data were also compared with the parameter calculations based on a 0D numerical model of the discharge. The measurements showed that the pulse-modulated operation mode of the RF ion source had a noticeable advantage when the power of the RF generator was 140 W or lower. However, as the generator power increased, the advantage was lost because the pulse-modulated operation mode, having a higher RF power instant value, entered the region of existence sooner than the continuous mode, where the ion production cost begins to grow with RF power.
This work was supported by the Russian Science Foundation (No. 21-72-10090), https://rscf.ru/en/project/21-72-10090/.
[1] |
Lisovskiy V A et al 2017 Vacuum 145 194 doi: 10.1016/j.vacuum.2017.08.042
|
[2] |
Musil J et al 2001 J. Vac. Sci. Technol. A 19 420 doi: 10.1116/1.1339018
|
[3] |
Bogaerts A and Gijbels R 1995 Phys. Rev. A 52 3743 doi: 10.1103/PhysRevA.52.3743
|
[4] |
Hebner G A and Fleddermann C B 1997 J. Appl. Phys. 82 2814 doi: 10.1063/1.366277
|
[5] |
Han J et al 2020 Phys. Plasmas 27 063509 doi: 10.1063/5.0007288
|
[6] |
Park J H et al 2017 Plasma Sources Sci. Technol. 26 055016 doi: 10.1088/1361-6595/aa61c2
|
[7] |
Saikia P et al 2017 Phys. Plasmas 24 013503 doi: 10.1063/1.4973233
|
[8] |
Tang X M and Manos D M 1999 Plasma Sources Sci. Technol. 8 594 doi: 10.1088/0963-0252/8/4/311
|
[9] |
Lieberman M A and Ashida S 1996 Plasma Sources Sci. Technol. 5 145 doi: 10.1088/0963-0252/5/2/006
|
[10] |
Subramonium P and Kushner M J 2004 Appl. Phys. Lett. 85 721 doi: 10.1063/1.1776617
|
[11] |
Ramamurthi B and Economou D J 2002 Plasma Sources Sci. Technol. 11 324 doi: 10.1088/0963-0252/11/3/315
|
[12] |
Subramonium P and Kushner M J 2002 J. Vac. Sci. Technol. A 20 325 doi: 10.1116/1.1434965
|
[13] |
Lymberopoulos D P, Kolobov V I and Economou D J 1998 J. Vac. Sci. Technol. A 16 564 doi: 10.1116/1.581072
|
[14] |
Gao F et al 2019 J. Appl. Phys. 126 093302 doi: 10.1063/1.5114661
|
[15] |
Lv X Y et al 2021 Chin. Phys. B 30 045202 doi: 10.1088/1674-1056/abd16b
|
[16] |
Han J et al 2019 Phys. Plasmas 26 103503 doi: 10.1063/1.5115415
|
[17] |
Qu C H, Nam S K and Kushner M J 2020 Plasma Sources Sci. Technol. 29 085006 doi: 10.1088/1361-6595/aba113
|
[18] |
Goebel D M and Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Hoboken: Wiley)
|
[19] |
Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002 doi: 10.1088/0963-0252/25/3/033002
|
[20] |
Groh K H and Loeb H W 1991 J. Prop. Power 7 573 doi: 10.2514/3.23364
|
[21] |
Killinger R, Leiter H and Kukies R 2007 RITA ion propulsion systems for commercial and scientific applications Proc. of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Cincinnati) (AIAA)
|
[22] |
Kralkina E A et al 2019 Vacuum 167 136 doi: 10.1016/j.vacuum.2019.05.041
|
[23] |
Kralkina E A et al 2017 Plasma Sources Sci. Technol. 26 055006 doi: 10.1088/1361-6595/aa61e6
|
[24] |
Kralkina E et al 2020 Plasma Sci. Technol. 22 055405 doi: 10.1088/2058-6272/ab69bd
|
[25] |
Masherov P E, Riaby V A and Godyak V A 2016 Rev. Sci. Instrum. 87 02B926 doi: 10.1063/1.4935003
|
[26] |
Kral'kina E A 2008 Phy. -Usp. 51 493 doi: 10.1070/PU2008v051n05ABEH006422
|
[27] |
Kralkina E A et al 2016 Plasma Sources Sci. Technol. 25 015016 doi: 10.1088/0963-0252/25/1/015016
|
[28] |
Vavilin K V et al 2004 Tech. Phys. 49 565 doi: 10.1134/1.1758329
|
[29] |
Kralkina E A et al 2018 AIP Adv. 8 035217 doi: 10.1063/1.5023631
|
[30] |
Biberman L M, Vorob'ev V S and Yakubov I T 1987 Kinetics of Nonequilibrium Low-Temperature Plasma (New York: Consultants Bureau)
|
[31] |
Gryziński M 1965 Phys. Rev. J. Arch. 138 A336 doi: 10.1103/PhysRev.138.A336
|
[1] | Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82 |
[2] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[3] | Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f |
[4] | Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51 |
[5] | LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06 |
[6] | WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11 |
[7] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[8] | ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09 |
[9] | YOU Zuowei(尤左伟), DAI Zhongling(戴忠玲), WANG Younian(王友年). Simulation of Capacitively Coupled Dual-Frequency N 2, O 2, N 2 /O 2 Discharges: Effects of External Parameters on Plasma Characteristics[J]. Plasma Science and Technology, 2014, 16(4): 335-343. DOI: 10.1088/1009-0630/16/4/07 |
[10] | LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02 |